To review for the midterm

- Review your notes, the text, the homework problems, and the suggested exercises in the schedule.
- Do all true false questions in the text. The exam will include a significant T/F section.
- Below is a list of topics for the exam and a sampling of questions from past exams. Review these also.
- VERY IMPORTANT. These are just questions from old exams for your practice. The questions on our exam may not be similar.

Vector Spaces and Subspaces

- The axioms of vector spaces and fields.
- The vector space \mathbb{F}^{n} associated to a field \mathbb{F}
- Proving and disproving that a set with two given operations is a vector space.
- The definition of a subspace.
- Proving or disproving that a subset of a vector space is a subspace.
- The sum, direct sum and intersection of subspaces.

Example Problems from old exams

(1) Let $V=\{(a, b) \mid a, b \in \mathbb{R}\}$ Define scalar multiplication \square and vector addition \boxplus as follows:

For $\lambda \in \mathbb{R}, \lambda \boxtimes(a, b)=(-\lambda b, \lambda a)$ and $\left(a_{1}, b_{1}\right) \boxplus\left(a_{2}, b_{2}\right)=\left(a_{1}-a_{2}, b_{1}+b_{2}\right)$ Prove that V is not a real vector space with these operations.
(2) Let V be a vector space over a field F, and let $T: V \rightarrow V$ be a linear transformation. Let $W=\{x \in V \mid T(x)=x\}$. Show that W is a subspace of V.
(3) Let V the space of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, and let W be the set of all functions f such that $f(1)=-f(2)$. Show that W is a subspace of V.
(4) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Let W be the set of all $v \in \mathbb{R}^{2}$ such that $T(v)=(1,1,1)$. Is W a subspace of \mathbb{R}^{2} ? Explain your answer carefully.
(5) Let $V=M_{2 \times 2}(\mathbb{R})$ and $W_{1}=\left\{\left.\left(\begin{array}{ll}a & b \\ c & a\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}$ and $W_{2}=\left\{\left.\left(\begin{array}{cc}0 & a \\ -a & b\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$. Determine a basis for and the dimension of the subspaces $W_{1}, W_{2}, W_{1} \cap W_{2}$, and $W_{1}+W_{2}$.

Spanning, independence, bases, and dimension

- The span of a set of vectors as a subspace, and determining if a given vector belongs to a span.
- Showing that a set of vectors is linearly independent or dependent. Finding linearly independent subsets.
- Showing that a set of vectors is a basis for a vector space.
- Identifying the dimensions of the most common vector spaces.
- The uniqueness of the representation of a vector as a linear combination of vectors in a chosen basis.
- The relation between linearly independent sets, spanning sets and bases.
- Finding a basis for a subspace.
(1) Suppose that $\{u, v\}$ is a basis for a vector space V. Show that $\{u+v, u+2 v\}$ is also a basis for V.
(2) Let V be a vector space and let $T: V \rightarrow V$ be a linear transformation.
(a) Suppose that $\left\{v_{1}, v_{2}\right\}$ is dependent. Show that $\left\{T\left(v_{1}\right), T\left(v_{2}\right)\right\}$ must also be dependent.
(b) True or false and explain: Suppose that $\left\{v_{1}, v_{2}\right\}$ is independent. Then $\left\{T\left(v_{1}\right), T\left(v_{2}\right)\right\}$ must also be independent.
(3) Let F be a field, and let W be the subspace of F^{n} defined as

$$
W=\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{1}+\cdots+a_{n}=0\right\} .
$$

Find the dimension of W, making sure to justify your work.
(4) Let V be a vector space of dimension $n \geq 2$. Let W_{1} and W_{2} be subspaces of V such that $W_{1} \neq V, W_{2} \neq V$, and $W_{1} \neq W_{2}$. Show that $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq \operatorname{dim}(V)-2$.
(5) Suppose $\left\{v_{1}, \ldots, v_{n}\right\}$ is a linearly independent set in vector space V and $w \in V$. Prove that if $\left\{v_{1}+w, \ldots, v_{n}+w\right\}$ is linearly dependent, then $w \in \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$.

Linear Transformations

- Showing a transfromation is linear.
- Identifying nullspace and range.
- Using the dimension (rank-nullity) theorem.
(1) Suppose $T: V \rightarrow V$ is a linear transformation and that $\operatorname{dim}(V)=3$. Give an example using a specific V and T such that $R(T)=N(T)$, or explain why this is not possible.
(2) Suppose $T: \mathbb{R}^{5} \rightarrow P_{5}(\mathbb{R})$ is a linear map. Suppose there exists $x \in \mathbb{R}^{5}$ such that $x \neq \mathbf{0}$ and $T(x)=\mathbf{0}$. Can T be onto? If yes, give an example of such a T and corresponding non-zero x. If not, justify why not.
(3) Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be given by $T(A)=\left(a_{11}-a_{22},-2 a_{22}-a_{12}\right)$.
(a) Show that T is linear.
(b) Find bases for the nullspace of T and for the range of T.
(4) (a) Give an example of vector spaces V and W and a linear map $T: V \rightarrow W$ such that T is one-to-one but not onto.
(b) Give an example of vector spaces V and W and a linear map $T: V \rightarrow W$ such that T is onto but not one-to-one. Page
(5) Let $V=P_{2}(\mathbb{R})$ and $W=P_{3}(\mathbb{R})$, and define $T: V \rightarrow W$ by $T(f(x))=x f(x)+f^{\prime}(x)$. Show that T is a linear transformation.

